Decentralized Control of Large-Scale Distributed System

Mario Südholt

Département Informatique, Mines Nantes

IMT Colloquium; March 26, 2014
Outline

1. Large-scale software systems

2. Improving distributed control in the Cloud
 - The Discovery initiative
 - Capacity planning
 - Advanced choreographies for service compositions
 - Protocols and distributed property enforcement
Networks and systems
Networks and systems

LAN

Wireless network
Networks and systems
Networks and systems

Private cloud

VPN

LAN

Public cloud

Wireless network
Networks and systems

Private cloud

LAN

Public cloud

VPN

Wireless network

Sensor network
Large-scale software systems

- Large-scale software systems (we are interested in)
 - The Web
 - The Cloud

- Major questions
 - How are they built and coordinated?
 - New architectures and implementation mechanisms?
 - How to ensure availability, correctness and security?
 - Handle cross-domain functionalities (across technical and policy domains)
The Web

- Basic model: **distributed coordination of services**
 - Loose coupling
 - (Some) Well-defined, standardized interfaces
 - REST interfaces
 - Centralization often arises: popular services, service orchestration …

- Correctness, security
 - **Standards, protocols** for low-level properties
 - But: frequent **violation of high-level properties**
 - Ex.: social cross-site forgery (S-CSRF) attacks

- Support for **distributed property enforcement**?
The Cloud

- **Mutualize resources** required by many users
- Many **types**
 - Public (Cloudwatt, Numergy, Amazon, Google, Microsoft, …)
 - Private, community, hybrid clouds
- Different **service levels**: IaaS, PaaS, SaaS
- Homogeneous environment
 - Hardware: datacenters (up to hundreds of thousands of servers)
 - Software: **virtual environments**
Cloud federations

- **Mutualize resources among one or several providers**
- Scale cloud services over geographic regions
 - Significant centralization

Problems
- Availability
- Connectivity
- Energy consumption ("ice clouds")
- Legal issues (data privacy)
Issues with centralized control

- Recap: centralized control in large-scale infrastructures
 - Cloud: significant centralization
 - Web: access to special servers, service orchestration

- Scaling issues, legal issues

- Issues on the **system architecture level**
 - Ex.: datacenters at the edge of the backbone

- **Implementation-level issues**
 - Ex.: centralized capacity planning in datacenters
Outline

1. Large-scale software systems

2. Improving distributed control in the Cloud
 - The Discovery initiative
 - Capacity planning
 - Advanced choreographies for service compositions
 - Protocols and distributed property enforcement
1. The Discovery initiative: architecture

A new architectural principle:

from federated clouds …
1. The Discovery initiative: architecture

A new architectural principle:

...to cooperative clouds
Main characteristics

- **Cooperative and autonomous management of virtual environments**
 - Manipulate virtual environments like processes in traditional OSes
- **Localization** of data and computations
 - Key to efficiency and sustainability
Locality in backbones (ex. Renater)

- Network state on 17 May 13
 - Underutilized links
 - Redundancy
 - Evolves in terms of points-of-presence (PoP)

- Potential for "close" Clouds
Distributed cooperative clouds (ex. Renater)

- **Close deployment** to network infrastructure
- **Extend network hubs with servers**
 - Dedicated to VM hosting
 - Proportional to PoP’s size
2. Capacity planning: virtual machines

- **Virtual machines**: software emulation of a computer

 - Advantages
 - Isolation
 - Snapshotting
 - Suspend/resume
 - **Fast live migration** in a datacenter
 Downtime: ca. 60ms

 - But: migration plans for large sets of VMs are costly
 - Crucial for handling over-/underutilization
 - Migration across datacenters?
VM scheduling

- **Objective:** *autonomously manage millions of VMs on tens of thousands of machines*

- Limitations of current approaches because of centralization
 - Reactivity and scalability
 - Fault-tolerance (single point of failure)

- Discovery also needs new VM scheduling strategy
Distributed VM scheduling

- **DVMS alg.:** **first fully decentralized algorithm**
 - Nodes have a local view of the system
 - Cooperation between direct neighbors to solve scheduling events

- Validation [Quesnel et al.: CCPE’12]}
 - In vivo (on Grid5000): ca. 500 physical machines, 4500 VMs
 - Simulation (using Simgrid): ca. 10K PMs, 80K VMs
3. Management of service compositions

- Service compositions (e.g., for business processes)
 - Composition programs (not manageable on large-scale)
 - Declarative definitions: orchestrations, choreographies

- **Service orchestration** (e.g., using BPEL)
 - Central chef d’orchestra
 - Subject to scalability issues (availability, lack of autonomy, …)

- **Service choreography**
 - No central orchestrator
 - Correct implementation?
 - Properties?
Service choreographies with session types

- **Session types**: type-based fully distributed choreographies

- Global types define an interaction as a whole
 - **Projection**: compilation to correct decentralized implementation
 - Guarantee correctness properties
 - No messages send at wrong times to wrong receiver
 - No deadlocks

- From 1998 (researchers from Imperial College L., U Lisbon)
 - Multi-party session types [POPL’08]
 - Session-types with roles [POPL’12]
 - Extension by security properties [Concur’12]

- Problems
 - **Forbidden functionalities**: no race conditions
 - Extensive rewrites for adding functionalities
Aspectual session types

- Extension [Tabareau et al.: Modularity’14]
 - Larger set of functionalities (admit some race conditions)
 - Simple and declarative adding

a) Trade session

\[S \to B: \text{Item} \]

\[B \to S: \text{Sale} \]

\[B \to C: \text{Purchase} \]

b) Negotiation aspect

\[S \to B: \text{Item} \]

\[\text{proceed} \]

\[C \to B: \text{Counter} \]

\[B \to C: \text{Offer} \]

c) Logging aspect

\[B \to S: * + B \to C: * \]

\[\text{proceed} \]

\[B \to L: \text{LogData} \]

d) Authentication aspect

\[B \to S: * + B \to C: * \]

\[\text{proceed} \]

\[B \to A: \text{Auth} \]

\[+ \]

\[A \to B: \text{Ok} \]

\[A \to B: \text{Retry} \]
4. Protocol adaptation

- **Ex. OAuth 2.0**
 - Framework for the authorization of resource accesses
 - Access by third parties without original credentials

- Used by all major Web, Cloud and software editors companies
 - Facebook, Google, Microsoft, SAP …

Main OAuth protocol flow
New types of distributed attacks

- Single sign-on (SSO), **social cross-site request forgery (S-CSRF)**
- May involve one instance of an OAuth protocol
- May include several instances

Problem: OAuth is a framework not a protocol

Right usage has to be enforced

(a) Alice Authorization/Authentication with OAuth

(b) Alice Session Swapping while OAuth Authentication
Distributed transformation of protocols

- **Modifications to the protocol flows needed**
 - Dynamic modifications
 - Over different steps/different instances of the protocols
 - Over different levels of the software stack

- Ex.: session identification, state introduction

- Approach [Cherrueau et al.: CloudCom’13]
 - **Domain-specific framework/protocol transformation language**
 - Invasive but controlled transformation of service compositions and implementations
Conclusion

- **Centralized control (still) common and problematic**
 - Cloud architectures, capacity management, service orchestrations

- **Discovery initiative** for a cloud architecture
 - Cooperative Clouds close to users
 - Interest by large players: Renater, Orange …

- **New distributed algorithms and tools** for VM scheduling, service choreographies, protocol manipulations
Thank you for your attention!

Questions?

Further information:

- Ascola research team: http://www.emn.fr/z-info/ascola
- Mario.Sudholt@mines-nantes.fr
- Discovery initiative: Adrien.Lebre@inria.fr (PI)